Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation
نویسندگان
چکیده
Super-resolution imaging of fluorescence-free plasmonic nanoparticles (NPs) was achieved using enhanced dark-field (EDF) illumination based on wavelength-modulation. Indistinguishable adjacent EDF images of 103-nm gold nanoparticles (GNPs), 40-nm gold nanorods (GNRs), and 80-nm silver nanoparticles (SNPs) were modulated at their wavelengths of specific localized surface plasmon scattering. The coordinates (x, y) of each NP were resolved by fitting their point spread functions with a two-dimensional Gaussian. The measured localization precisions of GNPs, GNRs, and SNPs were 2.5 nm, 5.0 nm, and 2.9 nm, respectively. From the resolved coordinates of NPs and the corresponding localization precisions, super-resolution images were reconstructed. Depending on the spontaneous polarization of GNR scattering, the orientation angle of GNRs in two-dimensions was resolved and provided more elaborate localization information. This novel fluorescence-free super-resolution method was applied to live HeLa cells to resolve NPs and provided remarkable sub-diffraction limit images.
منابع مشابه
Augmented 3D super-resolution of fluorescence-free nanoparticles using enhanced dark-field illumination based on wavelength-modulation and a least-cubic algorithm
Augmented three-dimensional (3D) subdiffraction-limited resolution of fluorescence-free single-nanoparticles was achieved with wavelength-dependent enhanced dark-field (EDF) illumination and a least-cubic algorithm. Various plasmonic nanoparticles on a glass slide (i.e., gold nanoparticles, GNPs; silver nanoparticles, SNPs; and gold nanorods, GNRs) were imaged and sliced in the z-direction to a...
متن کاملSelective fluorescent-free detection of biomolecules on nanobiochips by wavelength dependent-enhanced dark field illumination.
Individual silver nanoparticle-conjugated target protein (cTnI) molecules on gold-nanopatterned chip were selectively detected by wavelength dependent-enhanced dark field illumination. Using specific nanoparticles with unique sizes and materials, the immunotargeted nanoparticle on the chips was detected at the single-molecule level by monitoring changes in the plasmonic resonance based on wavel...
متن کاملCoherent Four-Fold Super-Resolution Imaging with Composite Photonic−Plasmonic Structured Illumination
We present a far-field super-resolution imaging scheme based on coherent scattering under a composite photonic−plasmonic structured illumination. The super-resolved image retrieval method, which involves the combination of 13 different diffraction-limited images of the specimen, is first developed within a Fourier optics framework. A feasible implementation of this optical microscopy technique ...
متن کاملSuper-Resolution Imaging at Mid-Infrared Waveband in Graphene-nanocavity formed on meta-surface
Plasmonic structured illumination microscopy (PSIM) is one of the promising wide filed optical imaging methods, which takes advantage of the surface plasmons to break the optical diffraction limit and thus to achieve a super-resolution optical image. To further improve the imaging resolution of PSIM, we propose in this work a so called graphene nanocavity on meta-surface structure (GNMS) to exc...
متن کاملIn situ High Throughput Scattering Light Analysis of Single Plasmonic Nanoparticles in Living Cells
Plasmonic nanoparticles have been widely applied in cell imaging, disease diagnosis, and photothermal therapy owing to their unique scattering and absorption spectra based on localized surface plasmon resonance (LSPR) property. Recently, it is still a big challenge to study the detailed scattering properties of single plasmonic nanoparticles in living cells and tissues, which have dynamic and c...
متن کامل